Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups

نویسنده

  • Soichi OKADA
چکیده

An alternating sign matrix is a square matrix with entries 1, 0 and −1 such that the sum of the entries in each row and each column is equal to 1 and the nonzero entries alternate in sign along each row and each column. To some of the symmetry classes of alternating sign matrices and their variations, G. Kuperberg associate square ice models with appropriate boundary conditions, and give determinanat and Pfaffian formulae for the partition functions. In this paper, we utilize several determinant and Pfaffian identities to evaluate Kuperberg’s determinants and Pfaffians, and express the round partition functions in terms of irreducible characters of classical groups. In particular, we settle a conjecture on the number of vertically and horizontally symmetric alternating sign matrices (VHSASMs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Classes of Alternating-Sign Matrices under One Roof

In a previous article [20], we derived the alternating-sign matrix (ASM) theorem from the Izergin determinant [12, 17] for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quartertur...

متن کامل

Symmetry Classes of Alternating Sign Matrices

An alternating sign matrix is a square matrix satisfying (i) all entries are equal to 1, −1 or 0; (ii) every row and column has sum 1; (iii) in every row and column the non-zero entries alternate in sign. The 8-element group of symmetries of the square acts in an obvious way on square matrices. For any subgroup of the group of symmetries of the square we may consider the subset of matrices inva...

متن کامل

A formula for a doubly refined enumeration of alternating sign matrices

Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...

متن کامل

A formula for the doubly refined enumeration of alternating sign matrices

Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...

متن کامل

U–turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration

Alternating sign matrices with a U–turn boundary (UASMs) are a recent generalization of ordinary alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama’s deformation of Weyl’s denominator formula. This bijection yields a for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006